vkit.mechanism.distortion_policy.opt
1# Copyright 2022 vkit-x Administrator. All Rights Reserved. 2# 3# This project (vkit-x/vkit) is dual-licensed under commercial and SSPL licenses. 4# 5# The commercial license gives you the full rights to create and distribute software 6# on your own terms without any SSPL license obligations. For more information, 7# please see the "LICENSE_COMMERCIAL.txt" file. 8# 9# This project is also available under Server Side Public License (SSPL). 10# The SSPL licensing is ideal for use cases such as open source projects with 11# SSPL distribution, student/academic purposes, hobby projects, internal research 12# projects without external distribution, or other projects where all SSPL 13# obligations can be met. For more information, please see the "LICENSE_SSPL.txt" file. 14from typing import Optional, Tuple 15from enum import Enum, auto 16 17from numpy.random import Generator as RandomGenerator 18 19from vkit.utility import rng_choice_with_size 20 21LEVEL_MIN = 1 22LEVEL_MAX = 10 23CHANNELS = [0, 1, 2] 24 25 26def sample_channels(rng: RandomGenerator): 27 num_channels = rng.integers(1, 4) 28 channels = None 29 if num_channels < 3: 30 channels = sorted(rng_choice_with_size(rng, CHANNELS, num_channels, replace=False)) 31 return channels 32 33 34def sample_int( 35 level: int, 36 value_min: int, 37 value_max: int, 38 prob_negative: Optional[float], 39 rng: RandomGenerator, 40 inverse_level: bool = False, 41): 42 if inverse_level: 43 level = LEVEL_MAX + 1 - level 44 45 value_range = value_max - value_min 46 level_value_min = round(value_min + (level - 1) / LEVEL_MAX * value_range) 47 level_value_max = round(value_min + level / LEVEL_MAX * value_range) 48 49 if level == LEVEL_MAX: 50 # Make sure value_max could be sampled. 51 level_value_max += 1 52 53 value = rng.integers(level_value_min, max(level_value_min + 1, level_value_max)) 54 if prob_negative and rng.random() < prob_negative: 55 value *= -1 56 57 # NOTE: rng.integers returns numpy.int64 instead of int. 58 # Some opencv function cannot handle numpy type, hence need to cast to int here. 59 value = int(value) 60 61 return value 62 63 64class SampleFloatMode(Enum): 65 LINEAR = auto() 66 QUAD = auto() 67 68 69def func_quad(x: float): 70 return -x**2 + 2 * x 71 72 73def sample_float( 74 level: int, 75 value_min: float, 76 value_max: float, 77 prob_reciprocal: Optional[float], 78 rng: RandomGenerator, 79 mode: SampleFloatMode = SampleFloatMode.LINEAR, 80 inverse_level: bool = False, 81): 82 if inverse_level: 83 level = LEVEL_MAX + 1 - level 84 85 value_range = value_max - value_min 86 87 if mode == SampleFloatMode.LINEAR: 88 level_ratio_min = (level - 1) / LEVEL_MAX 89 level_ratio_max = level / LEVEL_MAX 90 91 elif mode == SampleFloatMode.QUAD: 92 level_ratio_min = func_quad((level - 1) / LEVEL_MAX) 93 level_ratio_max = func_quad(level / LEVEL_MAX) 94 95 else: 96 raise NotImplementedError() 97 98 level_value_min = value_min + level_ratio_min * value_range 99 level_value_max = value_min + level_ratio_max * value_range 100 value = rng.uniform(level_value_min, level_value_max) 101 102 if prob_reciprocal and rng.random() < prob_reciprocal: 103 value = 1 / value 104 105 return value 106 107 108def generate_grid_size( 109 grid_size_min: int, 110 grid_size_ratio: float, 111 shape: Tuple[int, int], 112): 113 return max( 114 grid_size_min, 115 int(grid_size_ratio * max(shape)), 116 )
def
sample_channels(rng: numpy.random._generator.Generator):
def
sample_int( level: int, value_min: int, value_max: int, prob_negative: Union[float, NoneType], rng: numpy.random._generator.Generator, inverse_level: bool = False):
35def sample_int( 36 level: int, 37 value_min: int, 38 value_max: int, 39 prob_negative: Optional[float], 40 rng: RandomGenerator, 41 inverse_level: bool = False, 42): 43 if inverse_level: 44 level = LEVEL_MAX + 1 - level 45 46 value_range = value_max - value_min 47 level_value_min = round(value_min + (level - 1) / LEVEL_MAX * value_range) 48 level_value_max = round(value_min + level / LEVEL_MAX * value_range) 49 50 if level == LEVEL_MAX: 51 # Make sure value_max could be sampled. 52 level_value_max += 1 53 54 value = rng.integers(level_value_min, max(level_value_min + 1, level_value_max)) 55 if prob_negative and rng.random() < prob_negative: 56 value *= -1 57 58 # NOTE: rng.integers returns numpy.int64 instead of int. 59 # Some opencv function cannot handle numpy type, hence need to cast to int here. 60 value = int(value) 61 62 return value
class
SampleFloatMode(enum.Enum):
An enumeration.
Inherited Members
- enum.Enum
- name
- value
def
func_quad(x: float):
def
sample_float( level: int, value_min: float, value_max: float, prob_reciprocal: Union[float, NoneType], rng: numpy.random._generator.Generator, mode: vkit.mechanism.distortion_policy.opt.SampleFloatMode = <SampleFloatMode.LINEAR: 1>, inverse_level: bool = False):
74def sample_float( 75 level: int, 76 value_min: float, 77 value_max: float, 78 prob_reciprocal: Optional[float], 79 rng: RandomGenerator, 80 mode: SampleFloatMode = SampleFloatMode.LINEAR, 81 inverse_level: bool = False, 82): 83 if inverse_level: 84 level = LEVEL_MAX + 1 - level 85 86 value_range = value_max - value_min 87 88 if mode == SampleFloatMode.LINEAR: 89 level_ratio_min = (level - 1) / LEVEL_MAX 90 level_ratio_max = level / LEVEL_MAX 91 92 elif mode == SampleFloatMode.QUAD: 93 level_ratio_min = func_quad((level - 1) / LEVEL_MAX) 94 level_ratio_max = func_quad(level / LEVEL_MAX) 95 96 else: 97 raise NotImplementedError() 98 99 level_value_min = value_min + level_ratio_min * value_range 100 level_value_max = value_min + level_ratio_max * value_range 101 value = rng.uniform(level_value_min, level_value_max) 102 103 if prob_reciprocal and rng.random() < prob_reciprocal: 104 value = 1 / value 105 106 return value
def
generate_grid_size(grid_size_min: int, grid_size_ratio: float, shape: Tuple[int, int]):